LeCroy Application Briefs (1/30/03)

TRIGGERIN	G
	_

LAB 107 - Serial Pattern Trigger

Pass-Fail Mask Test Used To Acquire Serial Data Pattern

LAB 108 - Qualified First Trigger

Unique Trigger Captures Data From Cyclic Processes

ACQUISITION

LAB 204 - Debugging Asynchronous Interrupts

Sequence Mode Characterizes Interrupt Timing

LAB_WM205 - XXL Memory - 100 MSamples

Scope Option Offers Longest Acquisition Memory Yet

DISPLAY

LAB 303B - Constellation Displays

Analyze Data Communications Signals Using X-Y Displays

LAB 305 - Dot Plot Displays

Externally Clock Oscilloscope To Analyze PRML Channels

LAB 306A - Analog Persistence

Analog-like Intensity Or Color Graded Persistence In A DSO

LAB 307 - Surface Map Displays

View Signal change History Using This Unique Display

LAB WM308 -Splitting The Grid

The Effect Of Multiple Display Grids On Signal Integrity

LAB WM309 Virtual Memories in WaveMaster

Here is a way to make more than 4 memory channels

MEASURE

LAB 405A Modulation Analysis – FM

Using Jitter And Timing Analysis Functions To Analyze FM Signals

LAB WM405 Modulation Analysis – FM *WaveMaster version*

Using Jitter And Timing Analysis Functions To Analyze FM Signals

LAB 406A Modulation Analysis – AM

Time And Frequency Domain Analysis Of AM Signals

LAB 407A Modulation Analysis – PM

Using Jitter And Timing Analysis Functions To Analyze PM Signals

LAB_WM407	Modulation Analysis – PM <i>WaveMaster version</i> Using Jitter And Timing Analysis Functions To Analyze PM Signals
LAB 412 -	The diaBolical dB Understanding Logarithmic Scales And The deciBel
LAB 413 -	Jitter Measurement Tools New And Traditional Tools Make Jitter Measurements Easy
LAB 414 -	dBm Measurements in 600 Ohm Systems Scaling dBm Power Spectrum Readouts for 600 Ohm Systems
LAB 415 -	Error Vectors Measure Error Vectors In Quadrature Modulation Systems
LAB 416 -	Measuring Exponential Decay Slope Waveform Math Determines Exponential Time Constants
LAB 417 -	Position Error Analysis Histograms Measure Servo Runout and On-Track Percent
LAB 418 -	Measure Device Capacitance Easy Circuit Measures Voltage Dependent Capacitance
LAB 419 -	Measuring Clock Stability Jitter And Timing Analysis Measures Clock Stability
LAB 420 -	Characterizing Gated Oscillators Measuring Stability And Envelope Shape In Gated Oscillators
LAB 421 -	Modulation Analysis – PWM Use Jitter And Timing Functions To Analyze PWM Signals
LAB 422 -	Regulation And Ripple Trend Functions Analyze Load Related Power Supply Specs
LAB 423 -	Mechanical Measurements I Using A DSO To Measure Vibration Using Accelerometers
LAB 424 -	Mechanical Measurements II Using A DSO To Measure Basic Rotating Machine Dynamics
LAB 425 -	Mechanical Measurements III Measuring Self Excited Mechanical Resonances
LAB 426 -	Noise Measurements Time Frequency And Statistical Domain Analysis
LAB 427 -	Rescaling Measurement Units

Į	Jse	The	Rescale	Funct	ion For	Non-V	Voltage	Measuremen	ıts

	ose The Researc I unction I of Non-voltage weasurements
LAB 428 -	Power - Real And Apparent A Tutorial On Basic Power Measurements
LAB 429 -	How Fast Must I Sample? How Sampling Rate Affects Time Measurement Uncertainty
LAB 430 -	Using Waveform History Fast Acquisition And Display Of Signal Changes Over Time
LAB 431 -	Using Wavepilot Graph Quick Graph Feature Helps Analyze Waveform Variations
LAB 432 -	Wavepilot Operating Aid Puts All A Scope's Power At Your Fingertips
LAB 433 -	Wavepilot Too Operating Aid Opens The Power Of Waverunner-2 To All
LAB 435-	USB 2.0 Compliance Testing DSO Offers Waysform Analysis Leaking In Other Davises
LAB_WM430	DSO Offers Waveform Analysis Lacking In Other Devices 6Differential Crossing Voltage Utilizing LeCroy M1 To Measure Differential Crossover
PROCESSIN	G
	Calculating Area In X-Y Displays Waveform Math Finds Area Enclosed In X-Y Display
LAB 713 -	Testing Wireless Devices Waveform Math Used To Test Keyless Entry Transmitters
LAB 714 -	Setting Up FFT Span And Resolution A Logical Approach To Setting Up The FFT Function
LAB_WM714	Setting Up FFT In WaveMaster WaveMaster version A Logical Approach To Setting Up The FFT Function
LAB 715 -	Characterize Jitter Using Histograms Direct Readout Of Jitter Using Histograms Of Parameters
LAB 716 -	Relative Jitter Measurements Using Histograms To Characterize Relative Timing Jitter
LAB 717 -	Correlation Measurements Signal Detection And Propagation Studies Using Correlation
LAB 718 -	Using Histograms I Use Statistical Analysis To Characterize Random Events

LAB 719 -	Using Histograms II Statistical Analysis Helps Determine Product Specifications
LAB 720 -	Using Histograms III Statistical Analysis As A Diag stic Tool
LAB 721 -	Using Histograms IV Viewing Waveforms Related To Specific Histogram Data
LAB 722 -	Power Measurements I Measuring Peak And Average Power In Complex Signals
LAB 723 -	Amplitude, Phase, and Power Measuring Vector Modulated Signals
LAB 724 -	Comparing Waveforms De-skewing And Comparing Waveforms
LAB 725-	Using Parameter Trend Plots Power Supply Regulation Measurements Using Trend Plots
LAB 726 -	Dynamic Response Measurements Trend Plots Measure Phased Locked Loop Dynamics
LAB 727A -	Locating Clock Jitter Anomalies Trend Plots Locate Period And Width Violations
LAB 728 -	Parameter Mathematics Performing Basic Mathematics On Measured Parameters
LAB 729 -	Finding Setup/Hold Timing Violations Analyze And measure Sequential Logic Timing Statistically
LAB 730A -	Finding Maximum Incremental Jitter Locate Largest Cycle To Cycle Timing Changes
LAB 731 -	Data Logging Using Trend Plots Trend + Sequence Mode + Trigger Holdoff = Data Logger
LAB 732 -	High Pass Filtering Acquired Signals Using Enhanced Resolution To High Pass Filter Waveforms
LAB 733-	Visualizing Signal Variation Persistence Trace Function Shows Statistical Limits
LAB 734 -	Eye Diagram Analysis Tool Persistence Histograms Measure Eye Diagram Statistics

LAB 735 -	Spread Spectrum Clocking Spread Spectrum Clock Measurements Using A DSO
LAB 736 -	Dynamics Of A PLL Timebase Analyzing A Phase Locked Loop Synthesized Timebase
LAB 737 -	Cycle To Cycle Jitter Of CPU Clocks Evaluating Multi-frequency Clock Distribution Functions
LAB 738 -	SSC Measurements More Spread Spectrum Clock Measurements Using A DSO
LAB 739 -	Jitter Effects On 100BASE-T Timing Time Interval Error Detects Excessive Phase Jitter
LAB 740 -	Frequency Response Measurements Derive Frequency Response From Step Response
LAB 741 -	Measure Power In 3-Phase Systems Use A DSO To Measure Power In 3 Wire, 3-Phase Systems
LAB 742 -	Measuring Energy Verifying Energy Measurements Using Capacitor Discharge
LAB 743 -	Histogram Constellation Diagrams Determine The Statistical Population Of Each State
LAB 744 -	Phase Noise Measurements Convert Time Interval Error Into Phase Noise
LAB 745 -	Frequency Analysis Of Jitter Frequency Selective Determination Of RMS Jitter
LAB 746 -	Multi-Stage, Multi-Rate Filters Extending the Range Of Digital Filter Cutoff Frequencies
LAB747 -	Digital Filter Applications Useful Applications Of The Digital Filter Package (DFP)
LAB_WM74	7Digital Filter Applications Useful Applications Of The Digital Filter Package 2 (DFP2)
LAB 748 -	Measuring Phase Margin Measure The Phase Margin Of Power Supply Control Loops
LAB749 -	Validating Clock Designs Diag sing Clock Jitter Problems During Design Validation
LAB 750A -	PLL Loop Bandwidth

N	Measuring	Jitter	Transfer	Function	In	Phase	Locked	Loo	ns
⊥ ₹	10abai iii	JILLEI	IIuiibici	I WIICUIOII	111	I IIuse	Locked		ν

- **LAB_WM750** -PLL Loop Bandwidth WaveMaster version

 Measuring Jitter Transfer Function In Phase Locked Loops
- LAB751 Accumulated Jitter
 Making Accumulated Jitter Measurements
- LAB 754 Separating Jitter Sources
 Frequency Selective Separation of Jitter Components
- LAB 755 Parameter Mathematics
 Custom Measurement Parameters Using Parameter Math
- LAB 756 PLL Phase Offset

 Measuring Static and Dynamic Phase Offsets In PLL's
- LAB757 Custom Measurements WaveMaster version
 Create Custom Processing Functions In Your WaveMaster
- **LAB758** Custom Math with VBScript *WaveMaster version*Create Custom Math Functions using simple scripts
- LAB WM759 -Log Horizontal with VBScript WaveMaster version
 Create a Logarithmic Frequency Scale using VBScripts
- LAB WM760 Filter Signals Using MATLAB WaveMaster version
 Apply MATLAB Based Filters In The DSO's Processing Path
- **LAB WM763** Digital Filtering WaveMaster version
 Digital Filter Option Offers Both FIR And IIR Filters
- LAB WM762 CDMA WaveMaster version
 RF Wireless Signal Analysis using Oscilloscopes
- LAB_WM763Digital Filtering WaveMaster version
 Digital Filter Option Offers Both FIR And IIR Filters
- LAB_WM764The Processing Web WaveMaster version
 Create Custom Math functions and Parameters

INTERFACING

- **LAB 808 -** Understanding Active X Controls
- LAB 809 Making the Most of ActiveDSO Creating Command Buttons in Microsoft Excel
- LAB 810 Floppy Free Documentation
 Saving Data, Panels, Setups, & Images Via Remote Control

LAB 811 -	Using the Remote Control Assistant How your oscilloscope can help debug your source code
LAB812 -	Customize Your Scope
LAB 813 -	CustomDSO Files Create Custom Menus And Operations Remote Control Shortcuts Using Queries to Define Correct Remote Commands
LAB 814 -	1 If By LAN, 2 If By GPIB Full Remote Control Via LAN, GPIB, or RS232
LAB 815 -	LeCroy Scope & Internet Configuring LeCroy Scopes To Communicate Via Internet
SIGNAL SOI	URCES
LAB 910 -	
LAB911 -	Phase Modulated Waveforms Creating PM Waveforms For PLL Loop Bandwidth Tests
MISCELLAN	NEOUS
	Clock Oscillator Basics Precision Time Measurements OF Crystal Oscillators
LAB 1006 -	Clock Oscillator Stability Measuring Clock Oscillator Frequency Stability
LAB 1007 -	Phase Locked Loop basics An Introduction To Phase Locked Loops
LAB 1009 -	Jitter Analysis On Data Streams Automatically Determining Clock Frequency From Data
LAB 1010 -	Video Basics Video Format Overview
LAB 1011 -	Active Probes Active Probes for the LeCroy Analog Oscilloscopes
LAB 1012 -	Probing LVDS Signals Functional Testing Of LVDS Bus Signals Using HPF Probes
LAB 1013 -	Using Current Probes

Some Practical Hints On Effective Current Measurements

Analog Oscilloscope Application Briefs

TRIGGERING

LAB 1100 - TV Triggers

Video triggers and Pedestal Camping

ACQUISITION

LAB 1200 - De-skew

Adjustment for Critical Time Measurements

DISPLAY

LAB1300 - LA354 Dual Delay

What is Dual Delay and how does it work

LAB1301 - LA354...In Living Color!

Why a Color Storage Analog Scope and how does it work?

MEASURE

LAB 1400 - Analog Scope Displays

Scopes and Sunglasses

LAB 1401 - SCH Phase Adjustments

Sub Carrier Horizontal (SCH) Phase Adjustments

LeCroy Operating Notes

Triggering On Low Amplitude Logic Signal Transitions

LON 103A -	Setup/Hold Trigger Triggering On Setup/Hold Timing Violations
LON 104 -	Eye Diagram Triggering Set Up Eye Diagram Triggering Without A Symbol Clock
LON 105 -	Window Trigger Setting Up A Bi-Level Window Trigger
LON 106 -	Roll Mode Operation The Characteristics Of Roll Mode Are Scope Dependent
LON 107 -	OR'ed Trigger Trigger On Any Of Four Input Channels
ACQUISITIO	ON
LON 200 -	Offset, Sensitivity, And Noise Matching The Oscilloscope To Your Signal Input
DISPLAY LON 302 -	Zoom Display Of Large Waveforms How To Use Zoom Displays Effectively With Long Memory
LON 303 -	Display Compaction Displaying Long Waveforms Without Losing Detail
PROCESSIN	G
	Accuracy Of Time Histograms Demonstrating The Accuracy Of Time Parameter Histograms
LON 702 -	Power Spectral Density Understanding Power Spectral Density Measurements
LON 703 -	Bandwidth And Risetime Relating Frequency And Time Domain Figures Of Merit
LON_WM704	Time And Spectral Response Frequency And Time Domain Responses In Scopes

TRIGGERING LON 102 - Ru

Runt Trigger

INTERFACING

LON 801 - Printer, Plotter Compatibility
Connecting Printer and Plotters to LeCroy DSO's

LON 802 - MaskMaker Backgrounds
Creating Backgrounds In MaskMaker

LON_WM803 WaveMaster Remote Control WaveMaster version
Replacing Existing LeCroy Scopes in Remote Systems

PROBING& MISC

LON 1002 - Probing High Speed Circuits
Active And Low Capacitance Probes Reduce Capacitive Loading

LON 1003 - IP-2 Instapulser Battery Replacement
Use a lithium battery in place of the mercury battery

LON 1004 - Cleaning DSO Non-Volatile Memory
Procedure to clear LeCroy Oscilloscope non-volatile memory

ANALOG SCOPES

LON 1400 - LA3XX Series Analog Scopes Intensity Adjustments Kids, don't try this at home, we are trained professionals!